Depression of voltage-activated Ca2+ release in skeletal muscle by activation of a voltage-sensing phosphatase

نویسندگان

  • Christine Berthier
  • Candice Kutchukian
  • Clément Bouvard
  • Yasushi Okamura
  • Vincent Jacquemond
چکیده

Phosphoinositides act as signaling molecules in numerous cellular transduction processes, and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) regulates the function of several types of plasma membrane ion channels. We investigated the potential role of PtdIns(4,5)P2 in Ca(2+) homeostasis and excitation-contraction (E-C) coupling of mouse muscle fibers using in vivo expression of the voltage-sensing phosphatases (VSPs) Ciona intestinalis VSP (Ci-VSP) or Danio rerio VSP (Dr-VSP). Confocal images of enhanced green fluorescent protein-tagged Dr-VSP revealed a banded pattern consistent with VSP localization within the transverse tubule membrane. Rhod-2 Ca(2+) transients generated by 0.5-s-long voltage-clamp depolarizing pulses sufficient to elicit Ca(2+) release from the sarcoplasmic reticulum (SR) but below the range at which VSPs are activated were unaffected by the presence of the VSPs. However, in Ci-VSP-expressing fibers challenged by 5-s-long depolarizing pulses, the Ca(2+) level late in the pulse (3 s after initiation) was significantly lower at 120 mV than at 20 mV. Furthermore, Ci-VSP-expressing fibers showed a reversible depression of Ca(2+) release during trains, with the peak Ca(2+) transient being reduced by ∼30% after the application of 10 200-ms-long pulses to 100 mV. A similar depression was observed in Dr-VSP-expressing fibers. Cav1.1 Ca(2+) channel-mediated current was unaffected by Ci-VSP activation. In fibers expressing Ci-VSP and a pleckstrin homology domain fused with monomeric red fluorescent protein (PLCδ1PH-mRFP), depolarizing pulses elicited transient changes in mRFP fluorescence consistent with release of transverse tubule-bound PLCδ1PH domain into the cytosol; the voltage sensitivity of these changes was consistent with that of Ci-VSP activation, and recovery occurred with a time constant in the 10-s range. Our results indicate that the PtdIns(4,5)P2 level is tightly maintained in the transverse tubule membrane of the muscle fibers, and that VSP-induced depletion of PtdIns(4,5)P2 impairs voltage-activated Ca(2+) release from the SR. Because Ca(2+) release is thought to be independent from InsP3 signaling, the effect likely results from an interaction between PtdIns(4,5)P2 and a protein partner of the E-C coupling machinery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Depression of voltage-activated Ca release in skeletal muscle by activation of a voltage-sensing phosphatase

Muscle contraction is initiated when action potentials fired at the end-plate of the muscle cells propagate throughout the transverse tubule system and reach a region called the triad where the transverse tubule membrane comes into close apposition with two terminal cisternae of SR. There, transverse tubule depolarization triggers a conformational change of the dihydropyridine receptor (DHPR; t...

متن کامل

Malignant hyperthermia mutation Arg615Cys in the porcine ryanodine receptor alters voltage dependence of Ca2+ release.

Ca2+ inward current and fura-2 Ca2+ transients were simultaneously recorded in porcine myotubes. Myotubes from normal pigs and cells from specimens homozygous for the Arg615Cys (malignant hyperthermia) mutation of the skeletal muscle ryanodine receptor RyR1 were investigated. We addressed the question whether this mutation alters the voltage dependence of Ca2+ release from the sarcoplasmic reti...

متن کامل

Coupled gating between individual skeletal muscle Ca2+ release channels (ryanodine receptors)

Excitation-contraction coupling in skeletal muscle requires the release of intracellular calcium ions (Ca2+) through ryanodine receptor (RyR1) channels in the sarcoplasmic reticulum. Half of the RyR1 channels are activated by voltage-dependent Ca2+ channels in the plasma membrane. In planar lipid bilayers, RyR1 channels exhibited simultaneous openings and closings, termed "coupled gating." Addi...

متن کامل

T-tubule depolarization-induced SR Ca2+ release is controlled by dihydropyridine receptor- and Ca(2+)-dependent mechanisms in cell homogenates from rabbit skeletal muscle

In vertebrate skeletal muscle, the voltage-dependent mechanism of rapid sarcoplasmic reticulum (SR) Ca2+ release, commonly referred to as excitation-contraction (EC) coupling, is believed to be mediated by physical interaction between the transverse (T)-tubule voltage-sensing dihydropyridine receptor (DHPR) and the SR ryanodine receptor (RyR)/Ca2+ release channel. In this study, differential T-...

متن کامل

Transient loss of voltage control of Ca2+ release in the presence of maurocalcine in skeletal muscle.

In skeletal muscle, sarcoplasmic reticulum (SR) calcium release is controlled by the plasma membrane voltage through interactions between the voltage-sensing dihydropyridine receptor (DHPr) and the ryanodine receptor (RYr) calcium release channel. Maurocalcine (MCa), a scorpion toxin peptide presenting some homology with a segment of a cytoplasmic loop of the DHPr, has been previously shown to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 145  شماره 

صفحات  -

تاریخ انتشار 2015